构建递增等比数列an的生成规则与特性分析
创始人
2025-05-13 09:00:05
0次
在递增的等比数列中,每一项都是前一项乘以一个固定的比率得到的,并且这个比率大于1。等比数列的一般形式可以表示为:
\[a_n = a_1 \cdot r^{(n-1)}\]
其中:
- \(a_n\) 表示第\(n\)项,
- \(a_1\) 是首项,
- \(r\) 是公比(即每一项与它前一项的比例),
- \(n\) 是项数。
对于递增的等比数列,条件是 \(r > 1\)。如果 \(0 < r < 1\),则数列为递减;如果 \(r < 0\),则数列为摆动序列。
例如,考虑一个首项为2,公比为3的递增等比数列,则该数列的前几项为:2, 6, 18, 54, ... 这里每一项都是前一项乘以3得到的。
相关内容
"首项为1的等比...
为了更好地帮助您解决问题,我需要更多的信息。您提到的是两个数列,一...
2025-05-07 13:00:01